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Abstract—Online social media have been one of the greatest
drivers of societal change of the past two decades, but are
now being recognized as one of the major causes of opinion
radicalization and one of the most effective tools for opinion ma-
nipulation. Starting from a class of stochastic models of opinion
dynamics, and considering different structures of social networks
with increasingly realistic features (including a snapshot of the
Facebook friendship network), we develop a mathematical model
of different forms of opinion manipulation. We then explore
how network properties, and in particular degree distribution
and community structure, interact with the attack to amplify
or reduce its effect on the population, both globally and on
specific subsets. We find, in particular, that degree heterogeneity
is key to making online social media susceptible to very effective
attacks, even with relatively little effort. Communities instead
play a more complex role, acting both as barriers to the spread
of manipulated opinions through the whole population and as
amplifiers of manipulated opinions when the target of the attack
is a community of the online social medium. The results of
our study can help design effective strategies to prevent the
manipulation of opinions through online social media.

Index Terms—Opinion dynamics, opinion manipulation, social
network, community structure

I. INTRODUCTION

ONLINE social media have drastically changed the way
information is disseminated and public opinion is formed

in modern societies. By posting messages, every user of an
online social medium can reach a very large audience with
just a few clicks, potentially influencing the opinions of an
immense crowd on some specific topic. As a result, malicious
actors have powerful tools to target the most susceptible people
and manipulate collective opinion with the intent of pursuing
social, economic, or political interests.

For example, since the early 2010s, online companies have
been reported to employ remunerated people for viral mar-
keting, forming the so-called “Internet Water Army” [1] to
steer consumers’ choices towards specific commercial goods.
During election campaigns, party activists or social bots
(algorithmic-based artificial users that impersonate humans in
discussions on social media platforms [2]) can exert a great
influence on public opinion in online forums [3], [4]. In the
2016 US presidential election, the attack by hackers and trolls
on digital media was suspected to have significantly distorted
the results [5], [6] – the same problem affected the 2020
elections [7] – to the point that protecting elections from social
media manipulation is becoming a serious matter of concern
in several countries [8].
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Mathematical models have been widely used to obtain a
quantitative assessment of the formation and evolution of
opinions on social networks. These models can be grouped
into two main categories: deterministic and stochastic. In
deterministic models, each individual opinion on a given topic
is represented by a real-valued scalar, which evolves over
time depending on the opinions of its neighbors. Stemming
from the pioneering work of DeGroot [9], a rich literature has
flourished, revived in recent years by the advent and spread
of digital social platforms. For a survey on the deterministic
framework, the reader is referred to [10], [11].

To capture the complexity of the interdependence of nodes
within real-world social communities, however, the adoption
of a stochastic paradigm is particularly promising. Since it is
impossible to account for all the microscopic sources of influ-
ence affecting the opinion of individuals, it seems reasonable
to describe their opinion changes as random events governed
by a probabilistic law. A classical stochastic model used to
describe the opinion dynamics in a network is the so-called
Voter Model, originally proposed in [12]. Each individual,
at any time instant, has one of two discrete opinions and is
linked to the other nodes by a weighted connection graph. The
probability of flipping to the opposite opinion depends on the
opinions of the neighbors, according to a simple stochastic
rule. The Sznajd model [13] for opinion dynamics derives
from the Ising model used in statistical mechanics to describe
ferromagnetic phenomena. According to the model, the state of
each agent is a binary value and the agents are interconnected
by a lattice. At each step, two neighboring agents are randomly
selected and, based on their agreement or disagreement, their
state and the state of their neighbors is updated according to
a simple logical rule. Generalizations to more complex graphs
were also developed. Another important stochastic model,
grounded on a sociophysics perspective, is the Galam model
[14]. In its original formulation, the opinion is binary, the
agents are randomly divided in groups of a given size, and
the agents in each group update their opinion adopting the
majority opinion in the group. Then the agents are reshuffled
and the procedure is repeated until steady-state is attained.
This model does not take into account the connection network
of the agents.

The model considered in this paper can be seen as a refined
version of the Voter Model. It was originally proposed in [15],
and further developed and extended in [16]–[18]. It describes a
social network as a multi-agent system, where each agent rep-
resents an individual, having a categorical opinion that varies
with time within a finite set of possible options. Each agent’s
opinion is modeled as a stochastic Markov process which
evolves in time depending on the opinions of the neighboring
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agents. Precisely, the probability of moving to a different
opinion is positively affected by the fraction of neighbors that
share that opinion. The model parameters include the transition
probabilities of each isolated agent (determining its prejudice
and the volatility of its opinion), the graph topology associated
with the network, the individual influenceability, and a global
influence intensity parameter that measures the strength of the
interaction, as modulated by the content-filtering algorithm of
the online social medium. In [16], this model has been used to
describe both the transient evolution and the steady-state value
of the average opinion when the agents are homogeneous. The
effect of a centralized tuning on emerging collective behaviors
of heterogeneous agents was studied in [17], while [18] dealt
with the computation of second-order moments (correlation
and variance), with application to evaluating expectation and
variance of the vote share in a political competition between
two parties with different degree of stubbornness. In all
these papers, a key role is played by the social power of
a single agent, a centrality index that measures the weight
of each agent’s prejudice in determining the steady-state
network average opinion. Such an index can be analytically
computed from the model parameters, without the need for
extensive simulation. Compared to the Voter Model, this multi-
agent model is richer and more realistic, as it allows to deal
with many important sociological aspects (including individual
prejudice and influenceability, spontaneous change of opinion,
strength of interaction) that are overlooked in other stochastic
models. At the same time, it is still amenable to analytical
treatment and, through the computation of the social power,
provides a way to detect the agents in the network with more
influence capability. It is also worth noting that the model
naturally extends to more than two alternative opinions [19].

Given the documented risk of opinion manipulation through
online social media, several scholars have analyzed the many
facets of the problem from a mathematical modeling stand-
point. A typical manipulation strategy consists of targeting
some agents in the network in order to make them stub-
born agents, biased in favor of one of the opinions. For
example, in [20] the authors focus on a generalized voter
model by introducing agents that have a fixed state and
can influence others’ opinions with unidirectional influence
links. In particular, they study the optimal placement of such
agents to have the maximum impact on the global network
opinion. A similar problem is discussed in [21], highlighting
the role that the network structure plays in determining the
ease with which bias can be manipulated. Typically, optimal
manipulation strategies tend to target nodes with high-degree.
This may not be the case in different scenarios, like the one
considered in [22], where two external controllers compete to
steer the average network opinion in opposite directions. In
that case, it is shown that the optimal strategies are strongly
dependent on the opponent actions, the limitations in the
manipulation effort and the level of stubbornness of attacked
agents. In [23] the effect of an adversarial attack conducted to
distort the voter model dynamics is considered. Interestingly,
it is shown that even extremely small (and hardly detectable)
perturbations in the edge weights can significant alter the vote
dynamics. Manipulation strategies for majority-based models

are analyzed in [24], [25]. For a summary of different opinion
manipulation approaches in classical opinion dynamics models
(both deterministic and stochastic) the reader is referred to
[26].

An important feature of networks formed through online
social media is their community structure [27]–[29]: when
spreading or receiving information, users tend to mostly in-
teract with a rather restricted number of users with whom
they share interests, or geographical collocation, or political
orientation, just to mention a few possibilities. In network
terms, a community is defined as a set of nodes whose internal
connectivity (i.e., edge density) is much higher than the
connectivity to the rest of the network. The rigorous definitions
of community, and algorithms for identifying communities in
networks, are the subject of a very broad literature (see [30],
[31] for surveys). Very important is the notion of modularity
[32], a scalar indicator that quantifies to what extent the
network has a strong community structure or, on the contrary,
connections tend to be randomly distributed over the whole
network.

It is not surprising that, when studying information diffusion
and opinion dynamics on networks, the community structure
plays an important role. Intuitively, the high internal density
of connections favors an effective diffusion and a strong
influenceability within communities, whose borders however
tend to block or delay further spreading. The literature to date
reports diversified results, according to the diffusion model
and network properties used in the experiments (see e.g., [33]–
[39]).

In this paper, we analyze the dynamics of opinions in a so-
cial network manipulated by the tampering of an online social
medium characterized by a community structure. The objective
of our analysis is to identify the sources of vulnerability to
opinion manipulation in networks with a complex structure,
with the aim of contributing to improving the resilience of
future online social media (in this regard, we depart from the
literature which aims to optimize the effects of the attack, e.g.,
[40], [41]). The set of opinions is binary (say {1, 2}) and, in
the unperturbed situation (no manipulation), the social network
reaches a steady-state with a certain expected number of agents
in opinion 1 at each time instant. The first problem that we
address is to assess the worst-case effect that an attack to a
few nodes can have on the whole network. Two alternative
strategies of attack will be defined: the first one shifts the
average stand-alone opinion of some of the agents (soft attack),
and the other substitutes a few individuals with stubborn
agents (bots) diffusing the desired opinion (hard attack). To
evaluate the worst-case scenario, we maximize the effect of
these attacks over all possible choices of the attacked nodes,
using heuristics when an exact solution is not practical to
compute. The multiplicative network effect on spreading will
be confirmed – few attacked agents are sufficient to yield large
global variations – and, most notably, we will discuss how
communities are hit inhomogeneously by the attack. Then,
our second problem will be to assess how the opinion of a
given subset of the social network can be influenced. In this
case, we will discover that the attack strategies are much more
effective when such a subset corresponds to a community in
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the online social medium, proving that targeting a cohesive
pool of individuals (e.g., a group that, by virtue of sharing the
same interest or political orientation, forms a tight community
in the online social medium) is facilitated by the strong ties
among its members.

Overall, this paper contributes to the literature that studies,
through mathematical modeling, the dynamics of opinion
manipulation through online social media, to improve the
understanding of basic mechanisms and global effects. Our
hope is that, with better knowledge of the factors that make
online social media more or less susceptible to manipulation,
these will evolve into more robust and resilient platforms for
opinion sharing.

II. A MODEL OF OPINION DYNAMICS

In this paper, we consider a stochastic model for opinion
dynamics based on a network of interacting Markovian agents,
first proposed in [15] and then further developed in [16]–[18].
Figure 1 reports a graphical representation of the main features
of the model, both for an isolated and for a networked agent, as
well as the salient features of a manipulating attack: all these
notions will be introduced in this and the following sections.

We consider a social network, i.e., a group of individuals
(or agents), which form their opinion based on their individual
attitude towards a topic, on interactions through standard
communication channels (e.g., radio, television, press, in-
person social interactions), as well as through an online social
medium, and we separate the effects of the online social
medium from all the other effects. In its simplest formulation,
the model assumes that the opinion of each agent on a given
issue belongs to the binary set {1, 2}, and evolves in time
according to an irreducible continuous-time Markov chain
model [42].

In the absence of the online social medium, each agent r
has its own transition probability rates q

[r]
12 and q

[r]
21 of passing

from opinion 1 to opinion 2 and vice versa. Correspondingly,
the steady-state probability of agent r being in opinion 1 is
given by βr = q

[r]
21/(q

[r]
12 + q

[r]
21 ). This can be interpreted as the

stand-alone prejudice of agent r. This prejudice corresponds
to the opinion bias determined by all factors except the online
social medium.

The structure of the interactions through the social medium
is then described by a weighted graph G, with N nodes
corresponding to the agents and edges representing the mutual
influence between agents through the online social medium.
The weight wrs > 0, r ̸= s, attached to the edge directed
from node s to node r measures the trust of agent r in agent
s. If agents r and s do not influence each other, there is no
edge linking nodes r and s and we put wrs = wsr = 0. Also,
there is no self-influence, i.e., wrr = 0 ∀r. Notice that under
these assumptions the graph G is directed, because wrs ̸= wsr

in general, but fully reciprocated, i.e., wrs = 0 if and only
if wsr = 0: the topological structure of G is thus undirected.
The weights are collected in the N × N trustiness matrix
W = [wrs]. It is assumed, without loss of generality, that W
is row-normalized, i.e., W1N = 1N , where 1N is the all-one
N -dimensional column vector. The weighted Laplacian of the

graph is defined as L = IN − W , where IN is the N × N
identity matrix.

Due to the influence through the online social medium,
the transition rates of each individual are affected by an
additive term depending on the current opinions of neighbors.
More precisely, the transition probability rate q

[r]
ij , i ̸= j, is

increased to q
[r]
ij + ηr

∑
s∈Nr

wrsIs,j(t) where Nr is the set
of neighbors of agent r and the stochastic variable Is,j(t) has
value 1 if agent s has opinion j at time t and 0 otherwise.
The parameter ηr ≥ 0 is specific to each agent and denotes
her/his susceptibility to social influence. If ηr = 0, agent r
is stubborn, i.e., cannot be influenced by others’ opinions.
Conversely, large values of ηr denote a high tendency to
conform with neighboring opinions. The diagonal matrix H
with entries ηr, r = 1, 2, . . . , N , on the diagonal is called the
influenceability matrix.

It was shown in [17] that the state of the overall system
(obtained as the collection of all agents’ states) behaves like
a high-dimensional irreducible continuous-time Markov chain,
which is ergodic and thus asymptotically converges to a unique
steady-state for all initial conditions. While this property was
stated in [17] under the assumption that G is a strongly
connected graph, it can be easily shown that it holds also
without such a restrictive assumption. The overall multi-agent
model is denoted as the Master Markov model. The dimension
of its state space is 2N and makes it difficult to assess its
theoretical properties when the number N of agents is large.
However, it was proven in [17] that the Master Markov model
can be dramatically simplified via marginalization.

Precisely, letting zr(t) be the probability that agent r
has opinion 1 at time t and defining the vector z(t) =[
z1(t) z2(t) · · · zN (t)

]⊤
, it can be proven (see [17]) that

z(t) converges asymptotically to the steady-state vector

z̄ = (IN + F−1HL)−1β = Mβ, (1)

where β =
[
β1 β2 · · · βN

]⊤
is the vector of stand-

alone prejudices in the absence of the online social medium
influence (i.e., when H = 0), F is a diagonal matrix with
entries αr = q

[r]
12 + q

[r]
21 , r = 1, 2, . . . , N , on the diagonal, and

M = (IN + F−1HL)−1. As discussed in [17], the parameter
αr is a positive time-scale parameter, associated with the
rate of opinion change of agent r. Precisely, a high value
of αr corresponds to high opinion volatility. Note that the
matrix F−1H is a diagonal matrix with nonnegative diagonal
entries ηr

αr
. As a consequence, a low influenceability or a high

volatility yield the same effect.
Matrix M above has two interesting properties.
Lemma 1: Matrix M = (IN + F−1HL)−1 is nonnegative,

irrespective of the values of F , H , and L.
Proof: Matrices F and H are, by construction, diagonal

with nonnegative diagonal elements, while matrix −L is
zero row-sum and Metzler (it has nonnegative off-diagonal
elements). This ensures that the real parts of all the eigenvalues
of F−1HL are nonnegative so that the real parts of all
the eigenvalues of −M−1 = −(IN + F−1HL) are strictly
negative. Furthermore, since −L is Metzler, matrix −M−1 is
itself a Metzler matrix. As shown in [43], the fact that −M−1
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ISOLATED AGENT 

𝑞𝑞12 

𝑞𝑞21 stand-alone prejudice 

𝛽𝛽 =
𝑞𝑞21

𝑞𝑞12 + 𝑞𝑞21
 

NETWORKED AGENT 
𝑞𝑞21 → 𝑞𝑞21 + 𝜂𝜂� 𝑤𝑤𝑟𝑟𝑟𝑟𝐼𝐼𝑟𝑟,1

𝑟𝑟∈𝒩𝒩𝑟𝑟
 

𝑞𝑞12 → 𝑞𝑞12 + 𝜂𝜂� 𝑤𝑤𝑟𝑟𝑟𝑟𝐼𝐼𝑟𝑟,2
𝑟𝑟∈𝒩𝒩𝑟𝑟

 

SOFT ATTACK 
𝛽𝛽 → 𝛽𝛽 + ∆𝛽𝛽 

HARD ATTACK (BOT) 
opinion = 1 ∀𝑡𝑡 

influenceability 𝜂𝜂 = 0 
 

𝑠𝑠 

𝑟𝑟 

opinion 
2 

opinion 
1 

opinion 
2 

opinion 
1 

Fig. 1. A summary diagram of the opinion model and of the attack strategies. An isolated agent spontaneously switches between opinions 1 and 2, due to
external factors, with transition rates q12, q21, having probability β of being in opinion 1 at steady-state (stand-alone prejudice). When the agent’s opinion
is influenced through the online social medium, the transition rates increase according to the number of neighbors having a given opinion (Is,1, Is,2), to
the trust wrs given to the neighbor, and to the agent’s influenceability η. A soft attack to a given node increases the value of its stand-alone prejudice β by
altering the rates q12, q21. A hard attack replaces the node with a ”bot”, which has opinion 1 for all t and is not influenced by neighboring agents.

is Metzler with strictly negative eigenvalues implies that M is
a nonnegative matrix.

Lemma 2: Each row of M sums to 1, irrespective of the
values of F , H , and L.

Proof: By construction, W is row-normalized and L =
IN −W , therefore all rows of L sum to zero. Given that both
F and H are diagonal matrices, all rows of F−1HL must also
have zero sum, and therefore all rows of M−1 = IN+F−1HL
sum to 1. This implies that M−11N = 1N , and therefore
M1N = 1N .

Finally, notice that the expected fraction of agents sharing
opinion 1 at steady-state (hereafter denoted as E1 and dubbed
as the expected opinion share) is given by

E1 =
1

N

N∑
r=1

z̄r =
1

N
1⊤
NMβ =

1

N
∥Mβ∥1. (2)

The above equation states, quite simply, that the expected
opinion share is the average value of the elements of z̄ in
(1). It is worthwhile observing that the r-th element of the
row vector 1

N 1⊤
NM measures the social power of agent r,

since it represents the weight of the agent r’s prejudice in
determining the expected opinion share E1. In the context of
opinion dynamics, social power is a well-established concept,
dating back to the seminal work [44] on the formal theory
of interpersonal relations. Roughly speaking, individual social
power corresponds to the amount of influence an individual
has on the overall discussion in a group.

Remark 1: The theoretical results recalled above were
derived under the assumption that the Markov chain model of
each agent is irreducible. In that case, the prejudice βr takes
value in the open interval (0, 1). However, when discussing
some attack strategies in Section IV, we will need to relax

such an assumption, considering also the extreme cases when
βr, for some r, is either equal to 0 or 1. Note that eqs. (1)
and (2) are still valid also in those cases. As a matter of fact,
although the Master Markov model may be reducible, its graph
has a unique absorbing class, since nodes with βr equal to 0
or 1 have a deterministic asymptotic state. This ensures the
uniqueness of the steady state vector z̄.

III. MODELS OF NETWORK TOPOLOGIES

As we will see in the next sections, the network topology,
i.e., the structure of the edges that is encoded in the nonzero
off-diagonal elements of matrix L, has significant effects on
the response of the system to a change in some of its nodes
dynamics. In this paper, we consider three classes of artificial
networks with increasing complexity, and a real-world network
defined by Facebook friendships (see Sec. V for details).
In this section, we succinctly introduce the models used to
generate the artificial networks. We refer the reader to standard
textbooks (e.g., [45]) for a detailed discussion. All models
yield an undirected network whose structure is coded in an
adjacency matrix A = [ars], where ars = asr = 1 if an
edge connects nodes (r, s), and ars = asr = 0 otherwise
(also, arr = 0 ∀r). The degree dr =

∑N
s=1 ars = |Nr| is the

number of agents directly connected to r.
The network is then equipped with a trustiness matrix W =

[wrs] which is, in general, non-symmetric as discussed in Sec.
II, and which assigns a weight to each edge (notice that wrs =
0 if and only if ars = 0). More specifically, we investigate
three scenarios for W :
(1) Uniform trustiness: node r attributes the same trustiness

to all its neighbors, i.e., wrs =
1
dr

∀s ∈ Nr.
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(2) Random trustiness: node r attributes random trustiness to
its neighbors, i.e., wrs is extracted uniformly at random
in [0, 1], and then normalized such that

∑
s∈Nr

wrs = 1.
(3) Degree-dependent trustiness: node r attributes larger

trustiness to neighbors with larger degree, i.e., wrs =
ds

nr
,

where nr =
∑

s∈Nr
ds.

Notice that all three scenarios yield a row-normalized matrix
W ; the condition is explicitly enforced in the second case,
while it is a consequence of the definition of wrs in the other
two cases.

A. Small-World (SW) network

An SW network [46] is built by initially connecting the N
nodes in a circular lattice, where each node is linked to m
neighbors on the right and m on the left (thus each node has
initial degree dr = 2m). Then a rewiring procedure is carried
out: all nodes are sequentially scanned and, for each node r,
all of its right-side edges are considered. With probability p,
an edge is detached from the neighbor of r and connected to
a node selected uniformly at random. The resulting network
has an average node-to-node distance much smaller than the
original one, thanks to the long-distance connections origi-
nated by rewiring (“small-world effect”), while the clustering
coefficient C (the average probability that two neighbors of a
node are neighbors themselves, e.g., [45]) is rather large: the
coexistence of these two features is typical in social networks.
On the other hand, the network is “single-scale”, i.e., the
degree of nodes has only small fluctuations around the average
davg = 2m.

B. Barabási-Albert (BA) network

A BA network [47] is based on the principle of “preferential
attachment”: starting from a small number N0 of arbitrarily
connected nodes, a new node with m edges is added at each
step N0 + 1, N0 + 2, . . . , N . Each one of the m edges is
connected to an existing node r, selected with probability
proportional to its current degree dr. For large N , the resulting
network has a few nodes with disproportionately many con-
nections, coexisting with a majority of medium/small degree
nodes, giving rise to a strongly inhomogeneous (“scale-free”)
network with power-law degree distribution

Prob(dr = d) ∝ d−γ ,

with γ = 3 and average degree davg = 2m. Such a
functional form for the degree distribution is encountered in
a large number of real-world datasets. On the other hand, BA
networks have a vanishing clustering coefficient for large N ,
contrary to most real-world networks.

C. Lancichinetti-Fortunato-Radicchi (LFR) network

An LFR network [48] adds a further level of complexity,
namely community or modular structure [30]: the network
can naturally be partitioned in subgraphs, called modules
or communities, with large internal edge density but loose
connections to the other modules. It is a structure often
encountered in real-world networks, including social networks,

where a community is formed by a set of individuals who
address most of their interactions with other individuals of
their same community (e.g., [27], [28]).

The (maximum) modularity Q is the most used indica-
tor to quantify to what extent a network is actually struc-
tured into communities [30], [32]. Given a partition P =
{C1, C2, . . . , Cq} of the nodes, the associated modularity QP
is defined by

QP =
1

2L

∑
Ci

∑
(r,s)∈Ci

(
ars −

drds
2L

)
,

which is the (normalized) unbalance between the actual num-
ber of edges internal to communities, and the expected value
of such a quantity if the edges are randomized by preserving
the node degrees dr (it can be proved that drds

2L is indeed the
expected value of ars in the randomized network [32]). Thus
QP is large (→ 1 due to normalization) when, for the partition
P , the edges internal to communities are many more than what
is expected by chance. Then the modularity Q = maxP QP ,
obtained by maximizing over all possible partitions, is used
to measure overall to what extent the network is structured in
communities.

LFR networks are explicitly designed to have a built-
in community structure, with tunable modularity. In LFR
networks, not only the degree of nodes is power-law – and thus
inhomogeneously distributed – as in BA networks, but also the
size of communities is such, to mimic features typically found
in real-world data.

To generate an LFR network, one has to set – besides N and
davg – the values of γ and γc, i.e., respectively, the exponents
of the power-law degree distribution and of the community-
size distribution, and a “mixing parameter” µ prescribing the
fraction of edges each node directs outside its community, so
that the smaller µ, the stronger is the community structure.

IV. MODELS OF ATTACK STRATEGIES

Equation (2) establishes an algebraic relation between the
system parameters (agents and network) and the steady state
expected opinion share E1. Let us now consider the objective
of pushing such a quantity towards its extreme value of 1, i.e.,
of maximizing the expected number of agents sharing opinion
1, by acting on a small number of agents. This objective can be
formulated as a maximization problem, with (2) as the benefit
function. We can formulate two alternative strategies: we may
attempt to influence E1 by shifting the stand-alone prejudice
of some of the agents using means external to the online
social medium, for example by feeding them with manipulative
advertising [49], or by offering monetary [1] or other forms of
incentives (what we call a soft attack), and/or we may do so
by substituting some of the agents in the online social medium
with bots [2], [3] in charge of diffusing the chosen opinion in
the network (hard attack). Let us see how these two kinds
of attack translate in the mathematical formalism introduced
above.

A. Soft attack
We begin by rewriting the vector β of stand-alone prejudices

as β = βa.p.+∆, where βa.p. is the vector of a priori prejudices,
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before the attack, and the nonnegative vector ∆ encodes the
effect of the attack on the prejudices1. From (2) we obtain

E1 =
1

N
∥M(βa.p. +∆)∥1 =

1

N
∥Mβa.p.∥1 +

1

N
∥M∆∥1.

The linearity of the 1-norm over nonnegative real vectors
allows us to decouple the effects on E1 of the a-priori
prejudice βa.p. and of the variation of the prejudices ∆. A soft
attack only affects the variation of the prejudices, therefore it
only affects the last term in the above formula. Let us assume
to attack k agents in the network so as to change their a
posteriori prejudice from βa.p.

r to 1, which means that exactly
k elements of ∆ are nonzero. Denoting by

D = diag(1N − βa.p.),

the diagonal matrix with entries 1− βa.p.
r on the diagonal, we

can rewrite
1

N
∥M∆∥1 =

1

N
∥MDv∥1, v ∈ {0, 1}N ,

where v is a binary vector with unit elements corresponding
to the attacked agents. The optimal soft attack is then obtained
by solving the following binary optimization problem.

Problem 1 (Soft attack with known prejudices):

max
v∈{0,1}N

1

N
∥MDv∥1,

s.t. ∥v∥1 = k,

The solution simply amounts to selecting the k elements of
vector 1⊤

NMD of maximal value. Notice that vector 1
N 1⊤

NM
was defined at the end of Sec. II to be the vector of the agents’
social power, so that we can see 1

N 1⊤
NMD as the social power

vector, weighted by the diagonal elements of D. The optimal
solution to Problem 1 is thus given by attacking the k agents
with maximum weighted social power, the weight being the
gap between the agent’s a priori prejudice and 1.

The above general problem slightly changes if, more re-
alistically, we assume that the attacker has no knowledge of
the a priori prejudices βa.p. and cannot force the a posteriori
prejudices to 1. We may assume, rather reasonably, that βa.p.

are uniformly distributed between 0 and 1 and the a posteriori
prejudices are uniformly distributed between βa.p. and 1. In
this case, the optimization of the soft attack is formulated as
a maximization of the expected value

E [E1] = E
[
1

N
∥Mβa.p.∥1 +

1

N
∥MDv∥1

]
,

where now both βa.p. and D are stochastic variables, with βa.p.

uniformly distributed between 0N and 1N and the diagonal
of D uniformly distributed between 0N and 1N − βa.p.. The
quantity in the above expression is linear in the stochastic
variables2, so we can evaluate the expected value as

E [E1] =
1

2N
∥M1N∥1 +

1

4N
∥Mv∥1.

1The value of βr = q
[r]
21 /(q

[r]
12 + q

[r]
21 ) is increased by either increasing

q
[r]
21 or decreasing q

[r]
12 .

2Since ∥x∥1 is linear in x if x is a nonnegative vector, then E [∥x∥1] =
∥E[x]∥1 when x is a vector of nonnegative stochastic variables.

The optimal soft attack is then a solution of the following
binary optimization problem.

Problem 2 (Soft attack with unknown prejudices):

max
v∈{0,1}N

1

4N
∥Mv∥1

s.t. ∥v∥1 = k.

(3)

Notice again that ∥Mv∥1 = 1⊤
NMv, and the elements

of vector 1
N 1⊤

NM correspond to the social power of the N
agents. Therefore the above formula states that, lacking precise
knowledge about the a priori and a posteriori prejudices, the
soft attack that maximizes the expected number of agents
sharing opinion 1 corresponds to attacking the k agents with
maximum social power.

B. Hard attack

Let us now consider the modeling of a hard attack. In this
case, not only the a priori prejudices of k agents are affected
(and set strictly equal to 1 if we model bots as agents with an
unchangeable opinion), but their influenceability ηr is set to
0. This means that matrix H in (1) changes with the attack,
and so does M . Assuming perfect knowledge of vector βa.p.,
the optimal attack problem can now be formulated as follows.

Problem 3 (Hard attack with known prejudices):

max
v∈{0,1}N

1

N
∥Mvβ

a.p.∥1 +
1

N
∥MvDv∥1,

s.t. ∥v∥1 = k,

where Mv is matrix M = (IN + F−1HL)−1 after setting
Hrr = 0 (i.e., ηr = 0) if vr = 1.

The above problem is no longer linear in the decision
variable v, which now appears as an argument of matrix
Mv . The exact computation of the optimal hard attack is
therefore significantly more complex than the computation of
the optimal soft attack.

If, as we did for the soft attack, we assume that βa.p. is
unknown but uniformly distributed between 0N and 1N , while
the a posteriori prejudice of the attacked agent is set to 1 by
construction, following similar reasoning as before we find
that the hard attack that maximizes the expected number of
agents sharing opinion 1 is a solution to the problem

max
v∈{0,1}N

1

2N
∥Mv1N∥1 +

1

2N
∥Mvv∥1,

s.t. ∥v∥1 = k.

(4)

Notice the factor 1/2 in the second term of the benefit
function, in contrast to the factor 1/4 that we had in the
stochastic soft attack, due to the fact that the hard attack
guarantees a posteriori prejudice equal to 1 for the attacked
agents.

Using Lemma 2 we have that the first term 1
2N ∥Mv1N∥1 =

1
2 , so that (4) further simplifies as follows.

Problem 4 (Hard attack with unknown prejudices):

max
v∈{0,1}N

1

2N
∥Mvv∥1,

s.t. ∥v∥1 = k.

(5)
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Notice that the quantity δE1 = 1
2N ∥Mvv∥1, i.e., the benefit

function of Problem 4, is the expected increase – caused by
manipulation – in the fraction of agents sharing opinion 1 at
steady-state. The optimal value of this quantity will be denoted
by δE∗

1 in the remainder of the paper.

C. Attack heuristics

Problems 1 and 3 in the previous section describe the
optimization of the soft and hard attacks under the assumption
of perfect knowledge of the network agents’ prejudices. While
in principle prejudices can be estimated, for instance through
the analysis of the history of the opinions expressed by each
agent on the online social medium, they are unlikely to be
known exactly. Problems 2 and 4 therefore appear to be more
realistic models of an attack scenario. For this reason, in the
following, we focus on these two problems.

Problem 2 is solved exactly by computing the social power
of each agent. This computation has complexity O(N3) due
to the matrix inversion which is necessary to compute M .
Problem 4, on the other hand, is nonlinear, and a computation-
ally efficient exact solution is unknown. To tackle networks of
tens of thousands of nodes, we need a scalable heuristic. A
possibility is to follow the strategy which is exact for the soft
attack, that is to attack the k nodes with highest social power.
We call this the Social Power Heuristic. This heuristic stands
on the assumptions that Mv is only slightly different than M ,
and can therefore be approximated by M , and allows to find
a feasible solution to Problem 4 with complexity O(N3).

An alternative heuristic is to identify all the possible sets
of k nodes with top-ranking degrees, and then perform a
complete enumeration only among these sets. We call this the
Degree Heuristic. This heuristic hinges on the assumption that
the most effective targets are the agents that have the largest
number of neighbors, and in highly heterogeneous networks
the set of agents of top-ranking degree is much smaller than
the total number of agents. Computation of the agents’ degree
given L has complexity O(N2), but in most networks, the
Degree Heuristic requires the complete enumeration step, since
agents’ degree is an integer value and there are typically
multiple sets of k top-ranking agents with identical degree
distribution.

The two above-defined heuristics can be compared with the
exact solution (i.e. the exhaustive assessment of all possible
k-tuple of agents) only on very small systems. We report
in Fig. 2 the comparative performance of the exact solution
and the two heuristics in solving Problem 4, computed on
100 randomly generated SW networks of 40 nodes. Each of
the 100 networks was weighted according to each of the 3
trustiness scenarios detailed in the previous section. We see
how, irrespective of the trustiness scenario, the heuristics come
very close to the optimal value, with a slight advantage for the
Degree Heuristic. We cannot meaningfully test the heuristics
against the exact solution on BA and LFR networks sized as
in Fig. 2, because the small size prevents the generation of
a reasonable node degree and community size distributions,
which are the characterizing factors of BA and LFR networks.
However, we report in Fig. 3 the results of applying the two
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Fig. 2. Statistics of the optimal benefit δE∗
1 of Problem 4, computed using

the exact solution or the two heuristics when attacking 100 SW networks
(N = 40, m = 3, p = 0.2, 4 attacked agents). All the agents have volatility
αr = 1 and influenceability ηr = 1. Box limits are set at the lower and
upper quartiles.
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Fig. 3. Statistics of the optimal benefit δE∗
1 of Problem 4 computed using

the two heuristics, considering (top) 100 BA networks (N = 1000, m = 3,
4 attacked agents), or (bottom) 100 LFR networks (N = 1000, davg = 6,
γ = 3, γc = 1.35, µ = 0.2, 4 attacked agents). All the agents have volatility
αr = 1 and influenceability ηr = 1. Box limits are set at the lower and
upper quartiles.

heuristics to 100 BA and LFR networks of 1000 nodes. We
can see how, in the presence of highly heterogeneous degree
distribution, the Social Power Heuristic matches the Degree
Heuristic for all trustiness scenarios in solving Problem 4. The
Social Power Heuristic is therefore nearly optimal for hard
attacks with unknown prejudices on BA and LFR networks,
while it optimizes exactly the soft attacks with unknown
prejudices on any network. All the results in the next section
are therefore computed using this heuristic.

V. NUMERICAL RESULTS

For our numerical experiments, we used the model of
interactive Markovian agents described in Sec. II, assuming
that all agents have the same volatility, αr = 1 ∀r, and the
same influenceability, ηr = 1 ∀r, so that F−1H = IN . Note
that parameters α and η always appear as the fraction α/η, so
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TABLE I
POWER-LAW EXPONENTS OF THE CURVES IN FIG. 4.

SW BA LFR

Uniform -0.98 -0.56 -0.48

Random -0.97 -0.56 -0.47

Degree-dependent -0.98 -0.21 -0.12

they effectively act as a single parameter in the model, related
to the frequency with which agents change opinion. We created
SW, BA, and LFR networks with average degree davg = 26.
In SW networks, the rewiring probability was set to p = 0.2.
In LFR networks, the degree distribution exponent was set to
γ = 3, the same value as in BA networks, the community-size
distribution exponent to γc = 1.35, and the mixing parameter
to µ = 0.2.

To validate our results on a real-world online social medium,
we used the Facebook data set originally analyzed in [50],
which gathers the friendship edges of a set of Facebook
users in the New Orleans area in early 20093. The giant
component of this network (denoted by FB from now on)
has N = 63, 392 nodes and L = 816, 886 edges (density
ρ = 2L

N(N−1) = 4.07 × 10−4), with clustering coefficient
C = 0.22. The node degree dr spans three orders of mag-
nitude, varying from 1 to 1, 098 with davg = 25.8. For
community detection we used Louvain algorithm [51] (see
[52], [53] for recent alternatives). The community analysis
reveals a structure with rather large modularity Q = 0.62,
composed of 133 communities with diversified size: 10 larger
than 1, 000 nodes (the largest with 16, 210 nodes) and, overall,
only 25 larger than 10 nodes, with a power-law community-
size distribution exponent around γc = 1.35. Notice that the
strong inhomogeneity in the node degree and in the community
size are precisely the features reproduced by the LFR networks
above described. Moreover, both davg and the community-size
distribution exponent γc of the synthetic networks defined
above were chosen to be consistent with the corresponding
parameters of the FB network.

A. Effect of the network size on the attack

In Fig. 4 we show the value of δE∗
1 after attacking 10 agents

in networks of increasing size. Each point in the figure is the
average result of 100 attacks with the same network size and
attack strategy, on 100 randomly generated networks of the
corresponding topology. In the same plots we also display the
effect of attacking 10 randomly chosen agents in each network.

Since all curves appear as straight lines in log-log scale, they
are well approximated by power laws with exponents reported
in Table I. Notice that the slope of the lines increases with the
absolute value of the exponent. Lower exponents (higher in
absolute value) imply a milder effect of the attack for growing
N . We observe that targeted attacks (i.e., attacks whose targets
were optimized through the Social Power Heuristic) on SW
networks, which have almost homogeneous degree distribu-
tion, achieve nearly the same results as a random attack, with

3Data available from http://socialnetworks.mpi-sws.org/data-wosn2009.
html
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Fig. 4. Value of δE∗
1 when 10 agents are attacked in networks with N

ranging from 200 to 4000. Red, blue, and green curves represent the average
value of δE∗

1 obtained with hard attacks on 100 different networks for each
value of N and for each network topology, with the Social Power Heuristic.
Below each of the red SW curve appear three black curves, almost perfectly
overlapping. These represent the average value of δE1 when attacking 10
randomly chosen agents in the same SW, BA, and LFR networks.

a variation of the network expected opinion share that fits a
power-law function with exponent roughly equal to −1. In
other words, a random attack on any network, or the optimal
attack on an SW network, achieve an effect that is roughly
inversely proportional to the size of the network. On the other
hand, the impact of a targeted attack with the same effort in BA
and LFR networks is much larger and grows with the size of
the network. In these networks, attacking a very small number
of agents may have surprisingly strong effects even on very
large networks, particularly with Degree-dependent trustiness.
Extrapolating from the LFR curve with Degree-dependent
trustiness, we infer that attacking 10 agents in a network of
10,000,000 agents we may still expect δE∗

1 = 0.0461, that is,
a 4.6% shift in the expected fraction of agents having opinion
1, with only a fraction of 10−6 attacked agents.

The difference between BA and LFR networks, ceteris
paribus, is instead quite small. This means that the degree
heterogeneity is much more relevant than the existence of
communities in determining the effect of an attack on the
expected opinion share.
B. Effect of community structure on the attack

Community structure is however far from irrelevant in
determining how the effects of an attack propagate through
the network, irrespective of the trustiness model. Elaborating
on (2), we can assess the expected opinion share of a subset
S of nodes in the network as

E1(S) =
1

|S|
θ⊤SMβ,
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Fig. 5. LFR network, N = 40, 000, 10 attacked agents. Variation of the
expected opinion share within each community C, as a function of the size
|C| of the 26 communities. Each bubble corresponds to a community, and the
size is proportional to the number of attacked agents in the community. The
horizontal line is the expected variation of opinion share, δE∗

1 , over the whole
network (i.e., with uniform trustiness, the attack shifts the opinion share of
the whole network by 0.88%, while with degree-dependent trustiness it shifts
it by 9.35%). The results with Random trustiness overlap almost perfectly
with those with Uniform trustiness and were omitted for clarity.

10-3 10-2 10-1

Uniform trustiness

attacked
non-attacked

10-3 10-2 10-1

Random trustiness

10-3 10-2 10-1

/7zr

Degree-dependent trustiness

Fig. 6. Same network as in Fig. 5. Estimates of the probability densities of
δz̄r (7), for the agents in communities containing no attacked agents (gray)
and at least one attacked agent (red). The solid lines mark the medians of the
respective populations (notice that δz̄r is in log scale). The maxima of the
two densities were normalized to the same value for better comparability.

where the binary vector θ encodes as nonzero elements the
agents in subset S. Following the same steps that we used in
Section IV to obtain (5), we can therefore assess the expected
benefit of an attack encoded by binary vector v, within the set
of agents S, as

δE1(S) =
1

2|S|
θ⊤SMvv. (6)

In particular, we denote by δE∗
1 (C) the expected benefit on

community C of the optimal attack (Problem 4, equation (5)).

In Fig. 5 we report the value of δE∗
1 (C) for each community

C of an LFR network with N = 40, 000 nodes, subject to the
attack of 10 agents. The effect of the attack is very uneven
across communities. In the tested network, only 4 communities
contained at least one attacked agent, and the expected opinion
share of individuals within such communities shifts far more
than that of individuals belonging to other communities. The
largest community in the network has 13,974 nodes. Under
network attack, for this community we obtain δE∗

1 (C) =
0.1265 assuming Degree-dependent trustiness, which means
that the expected opinion share of its members shifts by
about 12.6% or, in other words, that about 1760 members
of the largest community change opinion, as a consequence
of attacking just 10 nodes. The expected opinion share of
members of the second-largest community shifts by little more
than the global network expected opinion share, while the
shift for the other two communities with attacked nodes is
below the network average yet larger than any non-attacked
community. With Uniform trustiness the numerical effect is
smaller, but the same considerations apply. The interplay of
attacks and community structure thus generates a relevant
splitting in the opinion of individuals belonging to different
communities. Notice, however, that the above evidence does
not clarify whether the large variation in the expected opinion
share of the attacked communities is the consequence of a
large shift of a small group of individuals, or it is due to a more
evenly distributed change throughout the whole community.
Figure 6 answers this question by showing an estimate4 of the
distribution of the variation

δz̄ = E[M(βa.p +∆)]− E[Mβa.p], (7)

for agents that belong or do not belong to attacked com-
munities. We see how the probability of having opinion 1
is significantly increased, for all trustiness models, for the
majority of agents that belong to attacked communities. This
means that, inside communities, opinions spread coherently
via a significant mutual influence, whereas the borders of
communities act, to some extent, as barriers that mitigate the
contagion.
C. Validation on the FB network

Remarkably, most of the above considerations remain valid
if, instead of a synthetic LFR network, we use the same
heuristic to compute the optimal attack on the Facebook
network FB. Figure 7 summarizes the results of the attack.
The effect on communities is qualitatively similar to that on
the LFR network, although the different impact on attacked
vs non-attacked communities is attenuated. Interestingly, also
a few very small, non-attacked communities display a variation
of the expected opinion share that is above average (see the
leftmost part of the plot): they are small groups of agents
which, although the community detection algorithm kept tech-
nically distinct from the attacked communities, have important
connections with the latter. In any case, Fig. 8 confirms that the
opinion variation is significantly larger for agents in attacked
communities.

4We used Matlab function ksdensity, see https://www.mathworks.com/help/
stats/ksdensity.html
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Fig. 7. Same as Fig. 5, but for the FB network, N = 63, 392. In this case the
largest community in the network has 16, 210 nodes. When this community
is attacked, assuming Degree-dependent trustiness, δE∗

1 (C) = 0.0271, which
means that the expected opinion share of members of this community shifts
by about 2.7%.
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Fig. 8. Same as Fig. 6, but for the FB network, N = 63, 392.

D. Attack targeted to a subset of the network

Now, we investigate the effects of an attack that is targeted
to a subset of the network. That is, the goal is no longer to
shift the opinion of the whole population, but to maximize
the effect on a prescribed subpopulation, which may or may
not form a community in the network. This is obtained by
maximizing the benefit defined in (6), that is, by solving

max
v∈{0,1}N

δE1(S) =
1

2|S|
θ⊤SMvv,

s.t. ∥v∥1 = k.

We see in Fig. 9 the expected variation in the opinion
share of the members of each community in the same LFR
network that we used in Fig. 5, with Uniform trustiness,
when a hard attack is targeted to the agents in the first,
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Fig. 9. Same as Fig. 5, but with an attack targeted on the third, second, or
largest community of the LFR network, with Uniform trustiness.

0 0.0089 0.0141

Fig. 10. Statistics of 100 attacks targeted to randomly chosen groups S of
13,974 agents in the network of Fig 9. The blue curve represents the estimated
probability density of the values of δE∗

1 (S) when attacking randomly chosen
groups, while the yellow line marks the value of δE∗

1 (S) when the target
group is the largest community in the network.

second, or third largest community in the network. Attacking
10 nodes, the expected opinion share of the largest community
shifts by about 1.4% if the attack is directed to the largest
community. This means that about 195 nodes change opinion.
The effect is reduced if the attack is directed to the second or
third largest community. The whole-network expected opinion
share shifts between 0.64% and 0.86% depending of which
of the three largest communities is targeted. Surprisingly, the
targeted attack on a community sometimes involves agents
outside of the target community. The network of Fig. 9 has 14
communities of at least 100 agents. While the targeted attack
on the 11 smaller communities involved only agents within
the target community, the figure shows how the attack on the
third or second largest community involves some agents in the
largest community, and the attack on the largest community
involves one agent in the second largest community: despite
the strong community structure, groups of agents that belong
to a community are sometimes sensitive to the opinions of
some agents that are external to their community. We also see
by comparing Figs. 9 and 5 (Uniform trustiness scenario) that,
when the attack is targeted to a community, the variation in the
opinion share of this community is larger than that achieved
with an attack that is optimized to affect the whole network.

This is however not true when the attack is targeted towards
a group of agents that does not form a community. Figure 10
shows the statistics of 100 attacks that were targeted towards
randomly chosen groups of 13,974 agents in the network, that
is, towards groups of agents of the same size as the largest
community, which however do not form communities in the
network. The variation in opinion share on these groups has
a median of 0.0089, and in our numerical experiment never
exceeds 0.00902; a significantly lower value than that obtained
when the target group was the largest community (0.0141,
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yellow line in Fig. 10). In other words, the fact of belonging
to a community in the online social medium makes this group
of agents significantly more sensitive to a targeted attack.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have studied how the structure of the social
network affects the attempt to manipulate, by influencing
the behavior of a tiny fraction of its users, the opinions of
people who communicate through an online social medium. In
particular, attention has been focused on networks structured
in communities, a feature that has been observed in the vast
majority of social networks.

As a first result, we have established that the optimal attack
strategy can be approximately implemented by attacking the
nodes with the largest social power, as defined in [15]. Hence,
by studying the effects of attacks directed to the nodes with
largest social power, we can assess the worst-case scenario of
an attack even for networks so large that the exact optimal
attack is not practically computable. Then, we have seen
that, in networks with low degree heterogeneity, such as in
the SW network model, the effect of an attack is inversely
proportional to the size of the network, and the optimal attack
is not significantly more effective than one that targets random
individuals in the network. Most of the real social networks
however display a large degree heterogeneity, with a few
nodes with very high degree (such as the influencers in online
social media). When considering models with this feature (BA
and LFR models, and the Facebook friendship network), we
observe that the effect of an attack scales with an exponent
that is much smaller (in magnitude) than 1. In other words, in
networks with high degree heterogeneity the relative impact of
the optimal attack grows with the size of the network, a feature
that makes optimal attack strategies particularly effective on
large populations [7], [23]. This gain is lost if the attack is
not optimized, that is, if the targets of the attack are chosen
randomly in the population. These considerations hold true
independently of the trustiness model, that is, independently
of whether we assume that individuals trust all their peers
the same or randomly, or attribute greater trustiness to peers
who are perceived as hubs (influencers) in the online social
medium.

When considering social networks structured in commu-
nities, such as the LFR model or the Facebook friendship
network we used for our experiments, we found that the
effect of the communities on the manipulability of opinions
is not trivial. On the one hand, communities act as barriers
to the spreading of the manipulated opinion, so that the
effect of an attack tends to be far greater in communities
that contain attacked nodes, that in communities that do not
contain such nodes. This confirms the existence of a blocking
effect caused by community borders and, more in general,
the relevant role of community structure on the breadth and
speed of information diffusion [35], [38]. On the other hand,
communities act as an amplification factor for the attempt of
opinion manipulation: an attack to an online social medium
optimized to influence the opinion of a given subset of a
population is much more effective if that subset is also a
community in the online social medium. This is in line with

some previous results highlighting the role of communities as
opinion incubators at the early stage of opinion diffusion, or
as echo chambers at a later stage [7].

A potentially interesting direction of further research may
regard the effect of heterogeneity in the values of the agents’
volatility and influenceability parameters. With respect to the
base case of homogeneous behavior, this would add behavioral
diversification, and could have a significant impact on individ-
ual social power and therefore on the effectiveness of an attack.
Another line of investigation regards the effect of changing
the number of attacked nodes. We fixed this quantity, in an
attempt to mimic a nontrivial yet reasonable attack scenario,
and we explored the dependence of the result on the ratio
of attacked nodes to network size by analyzing attacks on
networks of increasing size. The interplay between network
size, number of attacked nodes and average degree is left to
further investigation.
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